Doctorant : |
Johann DION
|
Directeur de thèse : |
Cyrille GRANDJEAN ,
Directeur de recherche CNRS |
Financement : |
|
Date de la soutenance : |
vendredi 28 octobre 2016, 00h00 |
Modalité : |
- Lieu : Amphithéâtre Pasteur, bâtiment 2, campus Lombarderie
|
Jury : |
- Président de jury : Jacques LEBRETON
- Rapporteur : Julie BOUCKAERT
- Rapporteur : Sébastien FORT
- Directeur de thèse :
Cyrille GRANDJEAN ,
Directeur de recherche CNRS
|
Omniprésentes dans le règne animal et végétal, les galectines occupent de nombreuses fonctions biologiques au sein des organismes vivants. Cette famille de lectines, capable de se lier aux B-galactosides grâce à un domaine de reconnaissance des sucres conservé, compte quinze membres chez les mammifères. Ces protéines ont pu être identifiées comme des acteurs importants de plusieurs processus biologiques tels que le cycle cellulaire, la réponse immunitaire ou encore la migration cellulaire. Plus récemment les galectines ont été identifiés comme des cibles thérapeutiques de choix car la dérégulation de l’expression de ces protéines a pu être corrélée à plus d’une centaine de pathologies (cancer, diabète, maladie inflammatoire,…). L’un des enjeux majeurs concernant la recherche sur ces protéines, est de parvenir à synthétiser des outils permettant une meilleure compréhension de leurs rôles au sein de l’organisme. Portant une attention plus particulière à la galectine-3, nous avons mis au point des voies de synthèses permettant l’obtention d’inhibiteurs affins et sélectifs de cette dernière, et ce dans le but d’être utilisés comme outils dans l’étude du rôle des galectines dans le phénomène de migration cellulaire des cellules épithéliales de la peau. Appliquant une réaction d’azido-phenylsélénation au lactal ou par une approche chimio-enzymatique, nous avons pu synthétiser deux familles de nouveaux composés dérivés de la lactosamine. L’affinité et la sélectivité de ces composés vis-à-vis des galectines ont été déterminées par des techniques de bio-puces, de polarisation de fluorescence ou encore de microcalorimétrie.
Publications
2018
Dion, Johann; Storozhylova, Nataliya; Dahbi, S; Lambert, Annie; Téletchéa, Stéphane; Dussouy, Christophe; Grandjean, Cyrille
Design and screening of sugar-derived small molecule inhibitors of galectins. Proceedings Article
Dans: J. Protein Proteomics, 2018.
@inproceedings{dion2018,
title = {Design and screening of sugar-derived small molecule inhibitors of galectins.},
author = {Johann Dion and Nataliya Storozhylova and S Dahbi and Annie Lambert and Stéphane Téletchéa and Christophe Dussouy and Cyrille Grandjean},
year = {2018},
date = {2018-01-01},
booktitle = {J. Protein Proteomics},
journal = {J. Protein Proteomics},
volume = {9},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
2017
Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Seuningen, Isabelle Van; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal
Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells Article de journal
Dans: Scientific Reports, vol. 7, no. March, p. 1–14, 2017, ISSN: 20452322.
@article{Coppin2017,
title = {Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells},
author = {Lucie Coppin and Audrey Vincent and Frédéric Frénois and Belinda Duch{ê}ne and Fatima Lahdaoui and Laurence Stechly and Florence Renaud and Céline Villenet and Isabelle Van Seuningen and Emmanuelle Leteurtre and Johann Dion and Cyrille Grandjean and Fran{ç}oise Poirier and Martin Figeac and Delphine Delacour and Nicole Porchet and Pascal Pigny},
doi = {10.1038/srep43927},
issn = {20452322},
year = {2017},
date = {2017-01-01},
journal = {Scientific Reports},
volume = {7},
number = {March},
pages = {1--14},
abstract = {Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3-/- mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3-/- mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.
Dion, Johann; Deshayes, Frédérique; Storozhylova, Nataliya; Advedissian, Tamara; Lambert, Annie; Viguier, Mireille; Tellier, Charles; Dussouy, Christophe; Poirier, Françoise; Grandjean, Cyrille
Lactosamine-Based Derivatives as Tools to Delineate the Biological Functions of Galectins: Application to Skin Tissue Repair Article de journal
Dans: ChemBioChem, vol. 18, no. 8, p. 782–789, 2017, ISSN: 14397633.
@article{Dion2017c,
title = {Lactosamine-Based Derivatives as Tools to Delineate the Biological Functions of Galectins: Application to Skin Tissue Repair},
author = {Johann Dion and Frédérique Deshayes and Nataliya Storozhylova and Tamara Advedissian and Annie Lambert and Mireille Viguier and Charles Tellier and Christophe Dussouy and Françoise Poirier and Cyrille Grandjean},
doi = {10.1002/cbic.201600673},
issn = {14397633},
year = {2017},
date = {2017-01-01},
journal = {ChemBioChem},
volume = {18},
number = {8},
pages = {782--789},
abstract = {Galectins have been recognized as potential novel therapeutic targets for the numerous fundamental biological processes in which they are involved. Galectins are key players in homeostasis, and as such their expression and function are finely tuned in vivo. Thus, their modes of action are complex and remain largely unexplored, partly because of the lack of dedicated tools. We thus designed galectin inhibitors from a lactosamine core, functionalized at key C2 and C3′ positions by aromatic substituents to ensure both high affinity and selectivity, and equipped with a spacer that can be modified on demand to further modulate their physico-chemical properties. As a proof-of-concept, galectin-3 was selectively targeted. The efficacy of the synthesized di-aromatic lactosamine tools was shown in cellular assays to modulate collective epithelial cell migration and to interfere with actin/cortactin localization.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Galectins have been recognized as potential novel therapeutic targets for the numerous fundamental biological processes in which they are involved. Galectins are key players in homeostasis, and as such their expression and function are finely tuned in vivo. Thus, their modes of action are complex and remain largely unexplored, partly because of the lack of dedicated tools. We thus designed galectin inhibitors from a lactosamine core, functionalized at key C2 and C3′ positions by aromatic substituents to ensure both high affinity and selectivity, and equipped with a spacer that can be modified on demand to further modulate their physico-chemical properties. As a proof-of-concept, galectin-3 was selectively targeted. The efficacy of the synthesized di-aromatic lactosamine tools was shown in cellular assays to modulate collective epithelial cell migration and to interfere with actin/cortactin localization.
Dion, Johann; Advedissian, Tamara; Storozhylova, Nataliya; Dahbi, Samir; Lambert, Annie; Deshayes, Frédérique; Viguier, Mireille; Tellier, Charles; Poirier, Françoise; Téletchéa, Stéphane; Dussouy, Christophe; Tateno, Hiroaki; Hirabayashi, Jun; Grandjean, Cyrille
Development of a Sensitive Microarray Platform for the Ranking of Galectin Inhibitors: Identification of a Selective Galectin-3 Inhibitor Article de journal
Dans: ChemBioChem, vol. 18, no. 24, p. 2428–2440, 2017, ISSN: 14397633.
@article{Dion2017a,
title = {Development of a Sensitive Microarray Platform for the Ranking of Galectin Inhibitors: Identification of a Selective Galectin-3 Inhibitor},
author = {Johann Dion and Tamara Advedissian and Nataliya Storozhylova and Samir Dahbi and Annie Lambert and Frédérique Deshayes and Mireille Viguier and Charles Tellier and Françoise Poirier and Stéphane Téletchéa and Christophe Dussouy and Hiroaki Tateno and Jun Hirabayashi and Cyrille Grandjean},
doi = {10.1002/cbic.201700544},
issn = {14397633},
year = {2017},
date = {2017-01-01},
journal = {ChemBioChem},
volume = {18},
number = {24},
pages = {2428--2440},
abstract = {Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3′-mono- and 2,3′-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2′-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3′-mono- and 2,3′-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2′-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7.
Lien