
Jean-Bernard POUVREAU
Maître de conférences Université
section 66
Équipe : |
Thèmes de recherche
Étude de la germination des graines de plantes parasites sur les modèles orobanche rameuse (Phelipanche ramosa), Orobanche cumana et Striga hermonthica et des signaux allélopathiques, composés de la rhizosphère, impliqués dans la mise en place des interactions plante hôte-plante parasite.
Projets
Parcours universitaire
1999 DEUG Sciences et Vie, UFR Sciences et techniques de Nantes,
2000 Licence de biologie, UFR Sciences et techniques de Nantes,
2001 Maîtrise de biologie cellulaire et physiologie, UFR Sciences et techniques de Nantes,
2002 DEA de biologie cellulaire, UFR Sciences et techniques de Nantes,
2006 Doctorat de biologie, École Doctorale de Chimie-Biologie, Université de Nantes. « Purification et caractérisation du pigment bleu-vert « marennine » synthétisé par la diatomée marine Haslea ostrearia (Gaillon/ Bory) Simonsen ; propriétés physico-chimiques et activités biologiques »
Publications
1 publication
Martinez, Lisa; Pouvreau, Jean-Bernard; Montiel, Gregory; Jestin, Christophe; Delavault, Philippe; Simier, Philippe; Poulin, Lucie
Soil microbiota promotes early developmental stages of Phelipanche ramosa L. Pomel during plant parasitism on Brassica napus L. Article de journal
Dans: Plant and Soil, vol. 483, p. 667–691 , 2022.
@article{martinez2022soil,
title = {Soil microbiota promotes early developmental stages of Phelipanche ramosa L. Pomel during plant parasitism on Brassica napus L.},
author = {Lisa Martinez and Jean-Bernard Pouvreau and Gregory Montiel and Christophe Jestin and Philippe Delavault and Philippe Simier and Lucie Poulin},
doi = {https://doi.org/10.1007/s11104-022-05822-6},
year = {2022},
date = {2022-12-08},
urldate = {2022-12-08},
journal = {Plant and Soil},
volume = {483},
pages = {667–691 },
publisher = {Springer},
abstract = {Purpose
The root holoparasitic plant Phelipanche ramosa has become a major constraint for rapeseed cultivation in western France for the last decades and its control remains challenging. To date, few studies have considered soil microbiota as a third partner of the parasitic plant-plant interaction. Therefore, we here addressed the question of how soil microbiota interferes with host-derived signal metabolites required for host plant recognition by the parasitic plant.
Methods
Using a branched broomrape infested soil (genetic group 1) from a rapeseed field, we first provided soil physicochemical and microbiological descriptions by metabarcoding, followed by P. ramosa seed germination and prehaustorium formation bioassays, and by in vitro co-cultivation with Brassica napus.
Results
Co-cultivation in presence of soil microorganisms promoted parasitic plant seed germination and attachments to host’s roots. Seed germination assays showed that only the combination of gluconasturtiin (main rapeseed glucosinolate) with soil extracts stimulated broomrape germination. This suggests a microbial conversion of gluconasturtiin into germination stimulants via soil microbial myrosinase enzymes. Furthermore, soil bacteria Arthrobacter, Ralstonia, Actinobacterium, Proteobacterium spp. and fungus Penicillium spp. were isolated and screened for myrosinase activity. Pre-germinated seeds treated with soil extracts or differentially filtrated soil extracts also promoted the formation of P. ramosa prehaustorium and led to more parasitic attachments on rapeseed roots in co-cultivation assays. This thus suggests that this enhancement of parasitic attachments could also be partly attributed to soil microbial production of haustorium inducing factors.
Conclusion
Soil microbiota influences B. napus - P. ramosa interaction by altering direct and indirect recognition signals.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
The root holoparasitic plant Phelipanche ramosa has become a major constraint for rapeseed cultivation in western France for the last decades and its control remains challenging. To date, few studies have considered soil microbiota as a third partner of the parasitic plant-plant interaction. Therefore, we here addressed the question of how soil microbiota interferes with host-derived signal metabolites required for host plant recognition by the parasitic plant.
Methods
Using a branched broomrape infested soil (genetic group 1) from a rapeseed field, we first provided soil physicochemical and microbiological descriptions by metabarcoding, followed by P. ramosa seed germination and prehaustorium formation bioassays, and by in vitro co-cultivation with Brassica napus.
Results
Co-cultivation in presence of soil microorganisms promoted parasitic plant seed germination and attachments to host’s roots. Seed germination assays showed that only the combination of gluconasturtiin (main rapeseed glucosinolate) with soil extracts stimulated broomrape germination. This suggests a microbial conversion of gluconasturtiin into germination stimulants via soil microbial myrosinase enzymes. Furthermore, soil bacteria Arthrobacter, Ralstonia, Actinobacterium, Proteobacterium spp. and fungus Penicillium spp. were isolated and screened for myrosinase activity. Pre-germinated seeds treated with soil extracts or differentially filtrated soil extracts also promoted the formation of P. ramosa prehaustorium and led to more parasitic attachments on rapeseed roots in co-cultivation assays. This thus suggests that this enhancement of parasitic attachments could also be partly attributed to soil microbial production of haustorium inducing factors.
Conclusion
Soil microbiota influences B. napus - P. ramosa interaction by altering direct and indirect recognition signals.
3 publications
Germain, Alexandre Saint; Jacobs, Anse; Brun, Guillaume; Pouvreau, Jean-Bernard; Braem, Lukas; Cornu, David; Clavé, Guillaume; Baudu, Emmanuelle; Steinmetz, Vincent; Servajean, Vincent; Wicke, Susann; Gevaert, Kris; Simier, Philippe; Goormachtig, Sophie; Delavault, Philippe; Boyer, François-Didier
A Phelipanche ramosa KAI2 protein perceives strigolactones and isothiocyanates enzymatically Article de journal
Dans: Plant Commun, vol. 2, no. 5, p. 100166, 2021, ISSN: 2590-3462.
@article{RN13,
title = {A Phelipanche ramosa KAI2 protein perceives strigolactones and isothiocyanates enzymatically},
author = {Alexandre Saint Germain and Anse Jacobs and Guillaume Brun and Jean-Bernard Pouvreau and Lukas Braem and David Cornu and Guillaume Clavé and Emmanuelle Baudu and Vincent Steinmetz and Vincent Servajean and Susann Wicke and Kris Gevaert and Philippe Simier and Sophie Goormachtig and Philippe Delavault and François-Didier Boyer},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553955/pdf/main.pdf},
doi = {10.1016/j.xplc.2021.100166},
issn = {2590-3462},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {Plant Commun},
volume = {2},
number = {5},
pages = {100166},
abstract = {Phelipanche ramosa is an obligate root-parasitic weed that threatens major crops in central Europe. In order to germinate, it must perceive various structurally divergent host-exuded signals, including isothiocyanates (ITCs) and strigolactones (SLs). However, the receptors involved are still uncharacterized. Here, we identify five putative SL receptors in P. ramosa and show that PrKAI2d3 is involved in the stimulation of seed germination. We demonstrate the high plasticity of PrKAI2d3, which allows it to interact with different chemicals, including ITCs. The SL perception mechanism of PrKAI2d3 is similar to that of endogenous SLs in non-parasitic plants. We provide evidence that PrKAI2d3 enzymatic activity confers hypersensitivity to SLs. Additionally, we demonstrate that methylbutenolide-OH binds PrKAI2d3 and stimulates P. ramosa germination with bioactivity comparable to that of ITCs. This study demonstrates that P. ramosa has extended its signal perception system during evolution, a fact that should be considered for the development of specific and efficient biocontrol methods.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Pouvreau, Jean-Bernard; Poulin, Lucie; Huet, Sarah; Delavault, Philippe
Strigolactone-Like Bioactivity via Parasitic Plant Germination Bioassay Article de journal
Dans: Methods Mol Biol, vol. 2309, p. 59–73, 2021, ISSN: 1940-6029.
@article{pmid34028679b,
title = {Strigolactone-Like Bioactivity via Parasitic Plant Germination Bioassay},
author = {Jean-Bernard Pouvreau and Lucie Poulin and Sarah Huet and Philippe Delavault},
doi = {10.1007/978-1-0716-1429-7_6},
issn = {1940-6029},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {Methods Mol Biol},
volume = {2309},
pages = {59--73},
abstract = {Strigolactones are a class of plant hormones involved in shoot branching, growth of symbiotic arbuscular mycorrhizal fungi, and germination of parasitic plant seeds. Assaying new molecules or compound exhibiting strigolactone-like activities is therefore important but unfortunately time-consuming and hard to implement because of the extremely low concentrations at which they are active. Seeds of parasite plants are natural integrator of these hormones since they can perceive molecule concentrations in the picomolar to nanomolar range stimulating their germination. Here we describe a simple and inexpensive method to evaluate the activity of these molecules by scoring the germination of parasitic plant seeds upon treatment with these molecules. Up to four molecules can be assayed from a single 96-well plate by this method. A comparison of SL-like bioactivities between molecules is done by determining the EC50 and the maximum percentage of germination.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lopez-Obando, Mauricio; Guillory, Ambre; Boyer, François-Didier; Cornu, David; Hoffmann, Beate; Bris, Philippe Le; Pouvreau, Jean-Bernard; Delavault, Philippe; Rameau, Catherine; Germain, Alexandre Saint; Bonhomme, Sandrine
The Physcomitrium (Physcomitrella) patens PpKAI2L receptors for strigolactones and related compounds function via MAX2-dependent and -independent pathways Article de journal
Dans: Plant Cell, vol. 33, no. 11, p. 3487-3512, 2021, ISSN: 1040-4651 (Print) 1040-4651.
@article{RN27,
title = {The Physcomitrium (Physcomitrella) patens PpKAI2L receptors for strigolactones and related compounds function via MAX2-dependent and -independent pathways},
author = {Mauricio Lopez-Obando and Ambre Guillory and François-Didier Boyer and David Cornu and Beate Hoffmann and Philippe Le Bris and Jean-Bernard Pouvreau and Philippe Delavault and Catherine Rameau and Alexandre Saint Germain and Sandrine Bonhomme},
url = {https://academic.oup.com/plcell/article-abstract/33/11/3487/6359828?redirectedFrom=fulltext},
doi = {10.1093/plcell/koab217},
issn = {1040-4651 (Print) 1040-4651},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {Plant Cell},
volume = {33},
number = {11},
pages = {3487-3512},
abstract = {In angiosperms, the α/β hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely noncanonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (-)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity toward (-)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. In contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
1 publication
Huet, Sarah; Pouvreau, Jean-Bernard; Delage, Erwan; Delgrange, Sabine; Marais, Coralie; Bahut, Muriel; Delavault, Philippe; Simier, Philippe; Poulin, Lucie
Populations of the Parasitic Plant Influence Their Seed Microbiota Article de journal
Dans: Front Plant Sci, vol. 11, p. 1075, 2020, ISSN: 1664-462X.
@article{pmid32765559,
title = {Populations of the Parasitic Plant Influence Their Seed Microbiota},
author = {Sarah Huet and Jean-Bernard Pouvreau and Erwan Delage and Sabine Delgrange and Coralie Marais and Muriel Bahut and Philippe Delavault and Philippe Simier and Lucie Poulin},
doi = {10.3389/fpls.2020.01075},
issn = {1664-462X},
year = {2020},
date = {2020-01-01},
urldate = {2020-01-01},
journal = {Front Plant Sci},
volume = {11},
pages = {1075},
abstract = {Seeds of the parasitic weed are well adapted to their hosts because they germinate and form haustorial structures to connect to roots in response to diverse host-derived molecular signals. presents different genetic groups that are preferentially adapted to certain hosts. Since there are indications that microbes play a role in the interaction especially in the early stages of the interaction, we studied the microbial diversity harbored by the parasitic seeds with respect to their host and genetic group. Twenty-six seed lots from seven cropping plots of three different hosts-oilseed rape, tobacco, and hemp-in the west of France were characterized for their bacterial and fungal communities using 16S rRNA gene and ITS (Internal transcribed spacer) sequences, respectively. First seeds were characterized genetically using twenty microsatellite markers and phenotyped for their sensibility to various germination stimulants including strigolactones and isothiocyanates. This led to the distinction of three groups that corresponded to their host of origin. The observed seed diversity was correlated to the host specialization and germination stimulant sensitivity within species. Microbial communities were both clustered by host and plot of origin. The seed core microbiota was composed of seventeen species that were also retrieved from soil and was in lower abundances for bacteria and similar abundances for fungi compared to seeds. The host-related core microbiota of parasitic seeds was limited and presumably well adapted to the interaction with its hosts. Two microbial candidates of species and were especially identified in seeds from oilseed rape plots, suggesting their involvement in host recognition and specialization as well as seed fitness for by improving the production of isothiocyanates from glucosinolates in the rhizosphere of oilseed rape.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
1 publication
Brun, Guillaume; Thoiron, Séverine; Braem, Lukas; Pouvreau, Jean-Bernard; Montiel, Grégory; Lechat, Marc-Marie; Simier, Philippe; Gevaert, Kris; Goormachtig, Sophie; Delavault, Philippe
CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants Article de journal
Dans: Plant Cell Environ, vol. 42, no. 9, p. 2612-2626, 2019, ISSN: 0140-7791.
@article{RN7,
title = {CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants},
author = {Guillaume Brun and Séverine Thoiron and Lukas Braem and Jean-Bernard Pouvreau and Grégory Montiel and Marc-Marie Lechat and Philippe Simier and Kris Gevaert and Sophie Goormachtig and Philippe Delavault},
url = {https://onlinelibrary.wiley.com/doi/10.1111/pce.13594},
doi = {10.1111/pce.13594},
issn = {0140-7791},
year = {2019},
date = {2019-01-01},
urldate = {2019-01-01},
journal = {Plant Cell Environ},
volume = {42},
number = {9},
pages = {2612-2626},
abstract = {Karrikins stimulate Arabidopsis thaliana germination, whereas parasitic weeds of the Orobanchaceae family have evolved to respond to host-exuded compounds such as strigolactones, dehydrocostus lactone, and 2-phenylethyl isothiocyanate. In Phelipanche ramosa, strigolactone-induced germination was shown to require one of the CYP707A proteins involved in abscisic acid catabolism. Here, germination and gene expression were analysed to investigate the role of CYP707As in germination of both parasitic plants and Arabidopsis upon perception of germination stimulants, after using pharmacological inhibitors and Arabidopsis mutants disrupting germination signals. CYP707A genes were up-regulated upon treatment with effective germination stimulants in both parasitic plants and Arabidopsis. Obligate parasitic plants exhibited both intensified up-regulation of CYP707A genes and increased sensitivity to the CYP707A inhibitor abscinazole-E2B, whereas Arabidopsis cyp707a mutants still positively responded to germination stimulation. In Arabidopsis, CYP707A regulation required the canonical karrikin signalling pathway KAI2/MAX2/SMAX1 and the transcription factor WRKY33. Finally, CYP707As and WRKY33 also modulated Arabidopsis root architecture in response to the synthetic strigolactone rac-GR24, and wrky33-1 exhibited a shoot hyperbranched phenotype. This study suggests that the lack of host-independent germination in obligate parasites is associated with an exacerbated CYP707A induction and that CYP707As and WRKY33 are new players involved in a variety of strigolactone/karrikin responses.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
1 publication
Goyet, Vincent; Billard, Estelle; Pouvreau, Jean-Bernard; Lechat, Marc-Marie; Pelletier, Sandra; Bahut, Muriel; Monteau, Fabrice; Spíchal, Lukas; Delavault, Philippe; Montiel, Grégory; Simier, Philippe
Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal Article de journal
Dans: J Exp Bot, vol. 68, no. 20, p. 5539-5552, 2017, ISSN: 0022-0957 (Print) 0022-0957.
@article{RN11,
title = {Haustorium initiation in the obligate parasitic plant Phelipanche ramosa involves a host-exudated cytokinin signal},
author = {Vincent Goyet and Estelle Billard and Jean-Bernard Pouvreau and Marc-Marie Lechat and Sandra Pelletier and Muriel Bahut and Fabrice Monteau and Lukas Spíchal and Philippe Delavault and Grégory Montiel and Philippe Simier},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853424/pdf/erx359.pdf},
doi = {10.1093/jxb/erx359},
issn = {0022-0957 (Print) 0022-0957},
year = {2017},
date = {2017-01-01},
urldate = {2017-01-01},
journal = {J Exp Bot},
volume = {68},
number = {20},
pages = {5539-5552},
abstract = {The heterotrophic lifestyle of parasitic plants relies on the development of the haustorium, a specific infectious organ required for attachment to host roots. While haustorium development is initiated upon chemodetection of host-derived molecules in hemiparasitic plants, the induction of haustorium formation remains largely unknown in holoparasitic species such as Phelipanche ramosa. This work demonstrates that the root exudates of the host plant Brassica napus contain allelochemicals displaying haustorium-inducing activity on P. ramosa germinating seeds, which increases the parasite aggressiveness. A de novo assembled transcriptome and microarray approach with P. ramosa during early haustorium formation upon treatment with B. napus root exudates allowed the identification of differentially expressed genes involved in hormone signaling. Bioassays using exogenous cytokinins and the specific cytokinin receptor inhibitor PI-55 showed that cytokinins induced haustorium formation and increased parasite aggressiveness. Root exudates triggered the expression of cytokinin-responsive genes during early haustorium development in germinated seeds, and bio-guided UPLC-ESI(+)-/MS/MS analysis showed that these exudates contain a cytokinin with dihydrozeatin characteristics. These results suggest that cytokinins constitutively exudated from host roots play a major role in haustorium formation and aggressiveness in P. ramosa.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
1 publication
Lechat, Marc-Marie; Brun, Guillaume; Montiel, Grégory; Véronési, Christophe; Simier, Philippe; Thoiron, Séverine; Pouvreau, Jean-Bernard; Delavault, Philippe
Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel Article de journal
Dans: J Exp Bot, vol. 66, no. 11, p. 3129-40, 2015, ISSN: 0022-0957 (Print) 0022-0957.
@article{RN22,
title = {Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel},
author = {Marc-Marie Lechat and Guillaume Brun and Grégory Montiel and Christophe Véronési and Philippe Simier and Séverine Thoiron and Jean-Bernard Pouvreau and Philippe Delavault},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449535/pdf/erv119.pdf},
doi = {10.1093/jxb/erv119},
issn = {0022-0957 (Print) 0022-0957},
year = {2015},
date = {2015-01-01},
urldate = {2015-01-01},
journal = {J Exp Bot},
volume = {66},
number = {11},
pages = {3129-40},
abstract = {Seed dormancy release of the obligate root parasitic plant, Phelipanche ramosa, requires a minimum 4-day conditioning period followed by stimulation by host-derived germination stimulants, such as strigolactones. Germination is then mediated by germination stimulant-dependent activation of PrCYP707A1, an abscisic acid catabolic gene. The molecular mechanisms occurring during the conditioning period that silence PrCYP707A1 expression and regulate germination stimulant response are almost unknown. Here, global DNA methylation quantification associated with pharmacological approaches and cytosine methylation analysis of the PrCYP707A1 promoter were used to investigate the modulation and possible role of DNA methylation during the conditioning period and in the PrCYP707A1 response to GR24, a synthetic strigolactone analogue. Active global DNA demethylation occurs during the conditioning period and is required for PrCYP707A1 activation by GR24 and for subsequent seed germination. Treatment with 5-azacytidine, a DNA-hypomethylating molecule, reduces the length of the conditioning period. Conversely, hydroxyurea, a hypermethylating agent, inhibits PrCYP707A1 expression and seed germination. Methylated DNA immunoprecipitation followed by PCR experiments and bisulfite sequencing revealed that DNA demethylation particularly impacts a 78-nucleotide sequence in the PrCYP707A1 promoter. The results here demonstrate that the DNA methylation status during the conditioning period plays a crucial role independently of abscisic acid in the regulation of P. ramosa seed germination by controlling the strigolactone-dependent expression of PrCYP707A1.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}