Doctorant : |
Yue WU
|
Directeur de thèse : |
Leila TIRICHINE ,
Directrice de recherche CNRS |
Financement : |
Chinese Scholarship Council (CSC) |
Date de la soutenance : |
lundi 16 octobre 2023, 13h45 |
Modalité : |
- Lieu : Amphithéâtre LPG, bâtiment 4, campus Lombarderie
|
Jury : |
- Président de jury : Mme. Dr. Marianne Delarue Professeure, Université de Paris-Saclay
- Rapporteur : Mme. Dr. Aline Probst Directrice de Recherche CNRS, Université Clermont Ferrand
- Rapporteur : M. Dr. Daniel Bouyer Chargé de Recherche CNRS, ENS Lyon
- Examinateur : M. Dr. Bruno Jesus Maître de Conférences, Université de Nantes
- Examinateur : M. Dr. Simon Dittami Chargé de Recherche CNRS, Sorbonne Université
- Directeur de thèse :
Leila TIRICHINE ,
Directrice de recherche CNRS
|
L’épigénétique est un domaine en pleine expansion au sein de la science contemporaine, qui se définit par étant les modifications héritables de la régulation génique sans altération de la séquence de l’ADN. Parmi les microalgues, la diatomée marine Phaeodactylum tricornutum s’est révélée être un organisme modèle de choix pour l’étude de l’épigénétique. Cette thèse a pour objectif d’approfondir notre compréhension du paysage épigénétique de P. tricornutum en utilisant la dernière version assemblée de son génome, afin de cartographier et caractériser l’épigénome. Afin de faciliter l’analyse des données épigénomiques et des transcrits, nous avons développé un navigateur exhaustif appelé PhaeoEpiView (https://PhaeoEpiView.univ-nantes.fr). Dans un souci de précision et d’exhaustivité accrues, nous avons mis à jour les marques d’histones précédemment publiées en recourant à des anticorps monoclonaux plutôt que polyclonaux, et nous avons utilisé une profondeur de séquençage plus importante. Par ailleurs, PhaeoEpiView a été enrichi en intégrant de nouvelles marques épigénétiques, H3K27Ac et H3K36me3, qui jouent un rôle crucial dans l’activation transcriptionnelle chez P. tricornutum. Parallèlement, nous avons exploré la fonctionnalité des protéines du complexe Polycomb (PcG), en particulier PRC1 et PRC2, qui sont impliquées dans la répression globale des gènes. Nos travaux ont porté sur l’étude de ces protéines chez P. tricornutum, tout en examinant les éventuelles différences par rapport aux organismes multicellulaires. Une découverte majeure a été réalisée grâce à la mise en évidence d’un modèle de cooccurrence unique de marques épigénétiques chez les diatomées, suggérant un mécanisme coopératif de répression et un recrutement interdépendant. En parallèle, afin d’approfondir notre compréhension du succès écologique de cette diatomée, nous avons étudié l’interaction entre le microbiome et l’épigénétique dans la réponse de P. tricornutum aux stress environnementaux, notamment l’hypersalinité. Nos recherches ont démontré la dépendance de P. tricornutum à l’égard de son microbiome associé pour sa survie dans des environnements à forte salinité. De plus, nous avons examiné l’influence de la méthylation de l’ADN sur la plasticité phénotypique de cet organisme exposé l’hypersalinité. Dans l’ensemble, nos résultats présentent des implications majeures pour le domaine de l’épigénétique, en mettant en évidence les mécanismes moléculaires régissant l’expression génique et les réponses environnementales chez les microalgues, et au-delà.
Publications
2021
Bourdareau, Simon; Tirichine, Leila; Lombard, Bérangère; Loew, Damarys; Scornet, Delphine; Wu, Yue; Coelho, Susana M; Cock, Mark J
Histone modifications during the life cycle of the brown alga Ectocarpus Article de journal
Dans: Genome Biology, vol. 22, no. 1, 2021, ISSN: 1474760X.
@article{Bourdareau2021,
title = {Histone modifications during the life cycle of the brown alga Ectocarpus},
author = {Simon Bourdareau and Leila Tirichine and Bérangère Lombard and Damarys Loew and Delphine Scornet and Yue Wu and Susana M Coelho and Mark J Cock},
url = {https://pubmed.ncbi.nlm.nih.gov/33397407/},
doi = {10.1186/s13059-020-02216-8},
issn = {1474760X},
year = {2021},
date = {2021-12-01},
journal = {Genome Biology},
volume = {22},
number = {1},
publisher = {BioMed Central Ltd},
abstract = {Background: Brown algae evolved complex multicellularity independently of the animal and land plant lineages and are the third most developmentally complex phylogenetic group on the planet. An understanding of developmental processes in this group is expected to provide important insights into the evolutionary events necessary for the emergence of complex multicellularity. Here, we focus on mechanisms of epigenetic regulation involving post-translational modifications of histone proteins. Results: A total of 47 histone post-translational modifications are identified, including a novel mark H2AZR38me1, but Ectocarpus lacks both H3K27me3 and the major polycomb complexes. ChIP-seq identifies modifications associated with transcription start sites and gene bodies of active genes and with transposons. H3K79me2 exhibits an unusual pattern, often marking large genomic regions spanning several genes. Transcription start sites of closely spaced, divergently transcribed gene pairs share a common nucleosome-depleted region and exhibit shared histone modification peaks. Overall, patterns of histone modifications are stable through the life cycle. Analysis of histone modifications at generation-biased genes identifies a correlation between the presence of specific chromatin marks and the level of gene expression. Conclusions: The overview of histone post-translational modifications in the brown alga presented here will provide a foundation for future studies aimed at understanding the role of chromatin modifications in the regulation of brown algal genomes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Background: Brown algae evolved complex multicellularity independently of the animal and land plant lineages and are the third most developmentally complex phylogenetic group on the planet. An understanding of developmental processes in this group is expected to provide important insights into the evolutionary events necessary for the emergence of complex multicellularity. Here, we focus on mechanisms of epigenetic regulation involving post-translational modifications of histone proteins. Results: A total of 47 histone post-translational modifications are identified, including a novel mark H2AZR38me1, but Ectocarpus lacks both H3K27me3 and the major polycomb complexes. ChIP-seq identifies modifications associated with transcription start sites and gene bodies of active genes and with transposons. H3K79me2 exhibits an unusual pattern, often marking large genomic regions spanning several genes. Transcription start sites of closely spaced, divergently transcribed gene pairs share a common nucleosome-depleted region and exhibit shared histone modification peaks. Overall, patterns of histone modifications are stable through the life cycle. Analysis of histone modifications at generation-biased genes identifies a correlation between the presence of specific chromatin marks and the level of gene expression. Conclusions: The overview of histone post-translational modifications in the brown alga presented here will provide a foundation for future studies aimed at understanding the role of chromatin modifications in the regulation of brown algal genomes.
Lien