Christophe THIRIET
Chargé de recherche CNRS
octobre 2008 - décembre 2022
section 21
Thèmes de recherche
Organisation, Expression, Evolution des génomes. Bioinformatique et Biologie des systèmes
Publications
1 publication
Poulet, Axel; Rousselot, Ellyn; Téletchéa, Stéphane; Noirot, Céline; Jacob, Yannick; Wolfswinkel, Josien; Thiriet, Christophe; Duc, Céline
The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum Article de journal
Dans: International Journal of Molecular Sciences, vol. 24, no. 2, 2023, ISSN: 1422-0067.
@article{ijms24021051,
title = {The Histone Chaperone Network Is Highly Conserved in Physarum polycephalum},
author = {Axel Poulet and Ellyn Rousselot and Stéphane Téletchéa and Céline Noirot and Yannick Jacob and Josien Wolfswinkel and Christophe Thiriet and Céline Duc},
url = {https://www.mdpi.com/1422-0067/24/2/1051
hal-03978828v1 },
doi = {10.3390/ijms24021051},
issn = {1422-0067},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {International Journal of Molecular Sciences},
volume = {24},
number = {2},
abstract = {The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2 publications
Poulet, Axel; Mishra, Laxmi Narayan; Téletchéa, Stéphane; Hayes, Jeffrey J; Jacob, Yannick; Thiriet, Christophe; Duc, Céline
Identification and characterization of histones in Physarum polycephalum evidence a phylogenetic vicinity of Mycetozoans to the animal kingdom Article de journal
Dans: NAR Genomics and Bioinformatics, vol. 3, no. 4, 2021, ISSN: 2631-9268, (lqab107).
@article{10.1093/nargab/lqab107,
title = {Identification and characterization of histones in Physarum polycephalum evidence a phylogenetic vicinity of Mycetozoans to the animal kingdom},
author = {Axel Poulet and Laxmi Narayan Mishra and Stéphane Téletchéa and Jeffrey J Hayes and Yannick Jacob and Christophe Thiriet and Céline Duc},
url = {https://doi.org/10.1093/nargab/lqab107
hal-03595485v1 },
doi = {10.1093/nargab/lqab107},
issn = {2631-9268},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {NAR Genomics and Bioinformatics},
volume = {3},
number = {4},
abstract = {Physarum polycephalum belongs to Mycetozoans, a phylogenetic clade apart from the animal, plant and fungus kingdoms. Histones are nuclear proteins involved in genome organization and regulation and are among the most evolutionary conserved proteins within eukaryotes. Therefore, this raises the question of their conservation in Physarum and the position of this organism within the eukaryotic phylogenic tree based on histone sequences. We carried out a comprehensive study of histones in Physarum polycephalum using genomic, transcriptomic and molecular data. Our results allowed to identify the different isoforms of the core histones H2A, H2B, H3 and H4 which exhibit strong conservation of amino acid residues previously identified as subject to post-translational modifications. Furthermore, we also identified the linker histone H1, the most divergent histone, and characterized a large number of its PTMs by mass spectrometry. We also performed an in-depth investigation of histone genes and transcript structures. Histone proteins are highly conserved in Physarum and their characterization will contribute to a better understanding of the polyphyletic Mycetozoan group. Our data reinforce that P. polycephalum is evolutionary closer to animals than plants and located at the crown of the eukaryotic tree. Our study provides new insights in the evolutionary history of Physarum and eukaryote lineages.},
note = {lqab107},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Duc, Céline; Thiriet, Christophe
Replication-Coupled Chromatin Remodeling: An Overview of Disassembly and Assembly of Chromatin during Replication Article de journal
Dans: International Journal of Molecular Sciences, vol. 22, no. 3, 2021, ISSN: 1422-0067.
@article{ijms22031113,
title = {Replication-Coupled Chromatin Remodeling: An Overview of Disassembly and Assembly of Chromatin during Replication},
author = {Céline Duc and Christophe Thiriet},
url = {https://www.mdpi.com/1422-0067/22/3/1113
hal-04210949v1 },
doi = {10.3390/ijms22031113},
issn = {1422-0067},
year = {2021},
date = {2021-01-01},
urldate = {2021-01-01},
journal = {International Journal of Molecular Sciences},
volume = {22},
number = {3},
abstract = {The doubling of genomic DNA during the S-phase of the cell cycle involves the global remodeling of chromatin at replication forks. The present review focuses on the eviction of nucleosomes in front of the replication forks to facilitate the passage of replication machinery and the mechanism of replication-coupled chromatin assembly behind the replication forks. The recycling of parental histones as well as the nuclear import and the assembly of newly synthesized histones are also discussed with regard to the epigenetic inheritance.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2015
Galvani, Angélique; Thiriet, Christophe
Nucleosome Dancing at the Tempo of Histone Tail Acetylation Article de journal
Dans: Genes (Basel), vol. 6, no. 3, p. 607-21, 2015.
@article{rEQ4:THIRIET:2015,
title = {Nucleosome Dancing at the Tempo of Histone Tail Acetylation},
author = {Angélique Galvani and Christophe Thiriet},
url = {https://doi.org/10.3390/genes6030607},
doi = {10.3390/genes6030607},
year = {2015},
date = {2015-07-01},
urldate = {2015-07-01},
journal = {Genes (Basel)},
volume = {6},
number = {3},
pages = {607-21},
abstract = {The impact of histone acetylation on transcription was revealed over 50 years ago by Allfrey and colleagues. However, it took decades for an understanding of the fine mechanism by which this posttranslational modification affects chromatin structure and promotes transcription. Here, we review breakthroughs linking histone tail acetylation, histone dynamics, and transcription. We also discuss the histone exchange during transcription and highlight the important function of a pool of non-chromatinized histones in chromatin dynamics.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}